Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plants (Basel) ; 11(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35631725

RESUMO

Before in vitro propagated Melia volkensii plants can be used for mass planting, the transition phase to in vivo conditions needs to be better controlled because too many plants are lost during acclimatization and in the field. Two experiments were set up to evaluate the effects of biological agents on the establishment of M. volkensii in vitro plantlets. The biological agents consisted of Trichotech®, Bio-cure B®, Rhizatech®, Bacillus subtilis, a Trichoderma isolate and self-isolated native arbuscular mycorrhizal fungi (AMF). Regarding the latter, in soil from the nursery, the number of AMF spores increased from six spores to 400 per 100 g of soil using a trap culture, in which thirteen AMF morphotypes were identified and root colonization assessed through observation of hyphae, vesicles, coils and appressoria. The first experiment was set up in the greenhouse to investigate the efficacy of the biological agents on the hardening off. In the second, a field experiment was set up to study their effect on the early establishment of the plantlets in the field compared to seedlings. All biological agents significantly (p ≤ 0.05) improved in vitro plant survival and growth compared to the control. The highest plant height and number of leaves per plant were recorded in plants treated with Rhizatech®, Native AMF, Bio-cure B® and Trichoderma isolate. The treatments with Rhizatech®, Bio-cure B® and native mycorrhiza recorded a significantly wider stem. The root diameter of the plants treated with Rhizatech® and Bio-cure B® was the largest, but the plants inoculated with the native AMF had the longest roots. Moreover, the inoculated plants generally developed multiple secondary roots. After two months, AMF had clearly colonized the acclimatized plantlets. In the field experiment, the biologicals made no difference in survival rate but did produce a significantly larger leaf area after two months, with the largest leaves recorded with Rhizatech®, native AMF and Trichotech®. They also increased the quality index of the plants from 0.21 to 0.52. The performance of in vitro grown M. volkensii plants six months after planting in semi-arid conditions in Kiambere was better than that of seedlings. Inoculation of plants increased plant height and diameter. Thus, inoculation of biological agents is an efficient approach for improving the early growth of in vitro propagated M. volkensii plants.

2.
Plant Dis ; 100(7): 1379-1387, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30686191

RESUMO

A survey was conducted from April to May 2014 in 214 farmers' fields located across six major cassava-producing provinces (Western, Northwestern, Northern, Luapula, Lusaka, and Eastern) of Zambia to determine the status of cassava mosaic disease (CMD) and the species diversity of associated cassava mosaic geminiviruses (CMG). Mean CMD incidence varied across all six provinces but was greatest in Lusaka Province (81%) and least in Northern Province (44%). Mean CMD severity varied slightly between provinces, ranging from 2.78 in Eastern Province to 3.00 in Northwestern Province. Polymerase chain reaction discrimination of 226 survey samples, coupled with complete DNA-A genome sequence analysis, revealed the presence of African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV), and East African cassava mosaic Malawi virus (EACMMV) as single or mixed infections of different proportions. Single-virus infections were predominant, occurring in 62.8% (ACMV), 5.8% (EACMMV), and 2.2% (EACMV) of samples relative to mixed-virus infections, which occurred in 19.5% (ACMV + EACMMV), 0.4% (ACMV + EACMV), and 0.9% (ACMV + EACMV + EACMMV) of samples. Phylogenetic analysis revealed the segregation of virus isolates from Zambia into clades specific to ACMV, EACMV, and EACMMV, further confirming the presence of all three viruses in Zambia. The results point to a greater diversity of CMG across major cassava-growing provinces of Zambia and implicate contaminated cassava cuttings in disease spread.

3.
Electron. j. biotechnol ; 12(2): 5-6, Apr. 2009. ilus, tab
Artigo em Inglês | LILACS | ID: lil-551366

RESUMO

This study was undertaken to characterize the alpha subgroup of the proteobacteria causing the huanglongbing (HLB) disease of citrus from three different ecological zones of Kenya namely the Lower highlands (LH2, LH3, 1800-1900 m above sea level); Upper midlands (UM3, UM4, 1390-1475m), Lower midlands (LM5, LM4, LM3 of 1290-1340-1390m), by isolation and sequencing DNA encoding the L10 and L12 ribosomal proteins and the intergenic region. A 7I6-basepair DNA fragment was amplified and sequenced and consisted of 536 basepairs of DNA encoding the L10 protein, 44 basepairs of DNA intergenic region and 136 basepairs of DNA that partially encodes the L12 protein. Sequences of rpL10/L12 protein genes from Kenyan strains were 98 percent and 81 percent similar to the South African 'Candidatus Liberibacter africanus strain Nelspruit' and the Asian 'Candidatus Liberibacter asiaticus' strains, respectively. The intergenic rDNA sequence of Kenyan strain from UM and LM showed 84 percent similarity with 'Candidatus L. africanus strain Nelspruit' and 50 percent similarity with 'Candidatus L. asiaticus' strain. However, the LH strain had an 11- basepairs deletion, while the LM4 had a 5-basepair deletion in the intergenic region compared to 'Candidatus L. africanus strain Nelspruit'. The L10 amino acid sequence was 100 percent homologous among HLB bacteria obtained from the agro-ecological zones in Kenya and the L10 protein sequence was also homologus to 'Candidatus L. africanus strain Nelspruit'. Nevertheless, the L10 amino acid sequence of 'Candidatus L. asiaticus' and the 'Candidatus L. africanus subsp. capensis' differed from the Kenyan strains by 18.36 percent and 11.82 percent, respectively. Phylogenetic analysis of both the L10/L12 rDNA sequences and the L10 amino acid sequences clustered the Kenyan strains of the 'Candidatus Liberibacter' species with members of alpha subdivision of proteobacteria.


Assuntos
DNA Ribossômico/agonistas , DNA Ribossômico/genética , Proteobactérias/enzimologia , Proteobactérias/metabolismo , Proteínas Ribossômicas , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA , Eletroforese em Gel de Ágar , Quênia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...